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Summary: A practical method was developed for the gain of potentially biologically active 4-aryl-
5,8-epiminobenzo[7]annulenes using tropinone as starting material with an azabicyclo[3.2.1]octan 
skeleton. In an effort to improve product yield, reaction process conditions were optimized and the 
cascade Michael/cyclization reaction went most smoothly using tetrahydrofuran as solvent in the 
presence of DBU at 60°C for 10 hours. More diverse 4-aryl-5,8-epiminobenzo[7]annulenes were 
synthesized in good yields and structurally identified by NMR, FTIR and mass spectrometry analysis. 
The assembly of the heterocyclic core proceeds by a cascade Knoevenagel condensation, Michael 
addition and cyclocondensation sequence with a broad substrate applicability and good functional 
group tolerance. 
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Introduction 

 

The 5,8-epiminobenzo[7]annulene skeleton 

is widely distributed in natural products as well as 

synthetic compounds with various valuable biological 

activity, such as anticonvulsant [1-2], N-methyl-D-

aspartate (NMDA) antagonist [3-5], 

phenylethanolamine N-methyltransferase (PNMT) 

inhibitor [6], antitumor [7-8] and treatment of type 2 

diabetes [9]. Simultaneously, the compound contains 

a 5,8-epiminobenzo[7]annulene skeleton can be used 

as a raw material for the synthesis of other useful 

compounds [10-12]. The medicinal relevance and 

other important applications of 5,8-

epiminobenzo[7]annulene derivatives have attracted 

more and more attention among synthetic chemists, 

and a lot of different synthesis methods were explored 

and proposed for the gain of 5,8-

epiminobenzo[7]annulene frameworks. In its 

characteristic molecular structure, a pyrrolidine ring 

was essentially contained. As an efficient way for the 

assembly of pyrrolidine ring, 1,3-dipolar 

cycloaddition with azomethine ylides can be 

employed for the design of 5,8-

epiminobenzo[7]annulenes, such as asymmetric 

[3+2]-dipolar cycloaddition [13-14], 

cycloisomerization/dipolar cycloaddition [15-16], 

dehydrogenative [3+2] cycloaddition [17] and 

intramolecular cross [3+2] cycloaddition [18]. In 

addition, a few different synthesis strategies, including 

radical translocation/cyclization [19], cyclization [20], 

intramolecular alkene carboamination [21], 

intramolecular ring closure [22], tandem C-H 

amination [23], hydroamination [24], and formal 

carbenoid insertion into the C−N bond in amide [25], 

have been developed for the construction of 5,8-

epiminobenzo[7]annulene skeleton. Although rich and 

diverse synthetic strategies have been explored, it is 

still a great challenge for the proposal of more novel 

methods with high efficiency and operability. 

 

Recently, tropinone has been taken as a 

structural core for the gain of various tropinone 

derivatives. Some of these compounds were obtained 

through the reaction of tropinone and aromatic 

aldehydes, such as 2,4-di((E)-arylidene)-8- 

azabicyclo[3.2.1]octan-3-ones [26-28], 2-((E)- 

arylidene)-8-azabicyclo[3.2.1]octan-3-ones [29-30], 

and 2-(hydroxy(aryl)methyl)-8-azabicyclo[3.2.1] 

octan-3-ones [31-33]. Moreover, these compounds can 

be further converted to other heterocyclic compounds 

[34-36]. In addition, 2-(8-azabicyclo[3.2.1]octan-3-

ylidene)malononitriles can be synthesized by the 

reaction between tropinone analogs and malononitrile, 

and can be used as a raw material in many other 

reactions [37]. However, there was few research about 

the direct synthesis of 4-aryl-5,8-

epiminobenzo[7]annulenes through one-pot reaction 

of tropinone, malononitrile and aldehydes. As a 

classical methodology, the Michael addition was a 

powerful tool for constructing new carbon–carbon 

bond playing a key role in many multicomponent 

reactions (MCR) especially in the construction of 

novel ring, which converted at least three different and 
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easily accessible starting materials to the expected 

products in only one step with reduced consumption, 

increased output and simplified operation [38-40]. 

Therefore, we try hard to supplement a different and 

effective method for the preparation of a series of 4-

aryl-5,8-epiminobenzo[7]annulenes by a tandem 

Michael addition−Cyclization reaction with 

acceptable results. 

 

Experimental 

 

All chemical reagents needed in the 

experiment were purchased from some reliable 

reagent companies and used as received. Thin layer 

chromatography (TLC) was used for the analysis of all 

reaction process, and column chromatography was 

applied to separate target compounds. The NMR 

spectra with the reported chemical shifts in ppm were 

applied for the structure characterization of all target 

compounds, and sample test was carried out on a 

Bruker AM400 NMR spectrometer utilizing 

tetramethylsilane (TMS) as the internal standard. The 

IR spectra of all products were determined by a 

Thermo Fisher FTIR spectrometer. Negative ion TOF-

MS data of all compounds were acquired from an 

Agilent mass spectrometer. 

 

General experiment process and operation 

steps for the one-pot synthesis of 4-aryl-5,8-

epiminobenzo[7]annulenes 4: Tropinone 1 (0.3 mmol), 

malononitrile 2 (1.2 mmol), aromatic aldehydes 3 (0.3 

mmol) and DBU (0.6 mmol) were taken and added to 

dry glass tubes equipped with a stirring bar, and then 

3mL tetrahydrofuran was added to dissolve the 

reactants. All reaction tubes were placed in a constant-

temperature oil bath, the reaction temperature was set 

at 60°C, and the reaction solution was stirred for 10 

hours. Subsequently, the desired product was isolated 

by column chromatography utilizing petroleum 

ether/ethyl acetate (1:1, v/v) as eluent. Finally, target 

product was concentrated making the use of a rotary 

evaporator and the residual organic solvent was 

removed by a vacuum drying oven. The spectral data 

of pure compounds is listed as follows. 

 

Compound 4a: Yellow solid; mp: 272-273°C. 
1H NMR (CDCl3): δ = 7.69-7.08 (m, 4H, Ar-H), 5.10 

(s, 2H, NH2), 3.59-3.57 (m, 1H), 3.53-3.50 (m, 1H), 

3.36-3.27 (m, 1H), 2.69-2.64 (m, 1H), 2.27 (s, 3H, 

CH3), 2.18-2.09 (m, 2H, CH2), 1.74-1.57 (m, 2H, CH2). 

IR (KBr): 3382, 3117, 2922, 2849, 2796, 2213, 1566, 

1490, 1449, 1296, 1266, 1254, 1236, 1159, 1140, 1071, 

1011, 826, 787, 754cm-1. MS-ESI: m/z 391.06 [M-H]-. 

Compound 4b: Yellow solid; mp: 296-298°C. 
1H NMR (CDCl3): δ = 7.16-7.10 (m, 4H, Ar-H), 4.99 

(s, 2H, NH2), 3.51-3.49 (m, 1H), 3.43-3.41 (m, 1H), 

3.26-3.20 (m, 1H), 2.60-2.55 (m, 1H), 2.18 (s, 3H, 

CH3), 2.15-2.03 (m, 2H, CH2), 1.66-1.61 (m, 2H, CH2). 

IR (KBr): 3387, 3238, 2923, 2849, 2797, 2217, 1606, 

1564, 1512, 1484, 1454, 1296, 1258, 1231, 1158, 834, 

787, 752cm-1. MS-ESI: m/z 331.14 [M-H]-. 

 

Compound 4c: Yellow solid; mp: 275-277°C. 
1H NMR (CDCl3): δ = 7.44-7.05 (m, 4H, Ar-H), 5.02 

(s, 2H, NH2), 3.49-3.48 (m, 1H), 3.43-3.40 (m, 1H), 

3.26-3.20 (m, 1H), 2.59-2.55 (m, 1H), 2.17 (s, 3H, 

CH3), 2.14-2.01 (m, 2H, CH2), 1.70-1.48 (m, 2H, CH2). 

IR (KBr): 3382, 3237, 3124, 2919, 2848, 2797, 2214, 

1567, 1494, 1451, 1296, 1255, 1237, 1159, 1141, 1092, 

1014, 829, 791, 756cm-1. MS-ESI: m/z 347.11 [M-H]-. 

 

Compound 4d: Pale yellow solid; mp: 278-

280°C. 1H NMR (CDCl3): δ = 7.47-7.07 (m, 4H, Ar-

H), 5.06 (s, 2H, NH2), 3.57-3.47 (m, 2H), 3.33-3.28 (m, 

1H), 2.67-2.61 (m, 1H), 2.25 (3H, CH3), 2.22-2.07 (m, 

2H, CH2), 1.73-1.63 (m, 2H, CH2). IR (KBr): 3387, 

3312, 3122, 2924, 2849, 2794, 2211, 1564, 1452, 1354, 

1296, 1255, 1237, 1162, 1140, 1079, 927, 887, 780, 

751, 717cm-1. MS-ESI: m/z 347.11 [M-H]-. 

 

Compound 4e: Black solid; mp: 288-290°C. 
1H NMR (CDCl3): δ = 8.05-7.33 (m, 4H, Ar-H), 5.03 

(s, 2H, NH2), 3.45-3.37 (m, 2H), 3.28-3.22 (m, 1H), 

3.09 (s, 3H, CH3), 2.63-2.58 (m, 1H), 2.18 (s, 3H, 

CH3), 2.15-2.02 (m, 2H, CH2), 1.65-1.61 (m, 2H, CH2). 

IR (KBr): 3359, 3252, 3065, 2923, 2870, 2211, 1568, 

1493, 1450, 1400, 1303, 1150, 1087, 1062, 960, 766, 

545cm-1. MS-ESI: m/z 391.13 [M-H]-. 

 

Compound 4f: Tawny solid; mp: 270-272°C. 
1H NMR (CDCl3): δ = 7.73-7.25 (m, 4H, Ar-H), 5.04 

(s, 2H, NH2), 3.44-3.42 (m, 2H), 3.28-3.22 (m, 1H), 

2.61-2.57 (m, 1H), 2.18 (s, 3H, CH3), 2.08-1.97 (m, 

2H, CH2), 1.66-1.61 (m, 2H, CH2). IR (KBr): 3342, 

3233, 3061, 2953, 2920, 2850, 2801, 2223, 1570, 1467, 

1406, 1331, 1287, 1270, 1167, 1124, 1106, 1068, 1023, 

864, 840cm-1. MS-ESI: m/z 381.14 [M-H]-. 

 

Compound 4g: Pale yellow solid; mp: 191-

193°C. 1H NMR (CDCl3): δ = 7.77-7.39 (m, 4H, Ar-

H), 5.09 (s, 2H, NH2), 3.52-3.46 (m, 2H), 3.35-3.29 (m, 

1H), 2.69-2.63 (m, 1H), 2.25 (3H, CH3), 2.20-2.02 (m, 

2H, CH2), 1.79-1.70 (m, 2H, CH2). IR (KBr): 3373, 

3226, 2925, 2853, 2216, 1571, 1449, 1354, 1326, 1308, 

1270, 1168, 1122, 1073, 809, 703cm-1. MS-ESI: m/z 

381.14 [M-H]-. 
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Compound 4h: Yellow solid; mp: 249-250°C. 
1H NMR (CDCl3): δ = 7.84-7.32 (m, 4H, Ar-H), 5.11 

(s, 2H, NH2), 3.52-3.45 (m, 2H), 3.34-3.30 (m, 1H), 

2.68-2.64 (m, 1H), 2.25 (s, 3H, CH3), 2.22-2.08 (m, 

2H, CH2), 1.69-1.56 (m, 2H, CH2). IR (KBr): 3340, 

3233, 2921, 2852, 2230, 1568, 1511, 1455, 1351, 1287, 

1263, 1167, 1136, 1107, 1071, 868, 845cm-1. MS-ESI: 

m/z 338.15 [M-H]-. 

 

Compound 4i: Yellow solid; mp: 297-298°C. 
1H NMR (CDCl3): δ = 8.33-7.32 (m, 4H, Ar-H), 5.05 

(s, 2H, NH2), 3.45-3.39 (m, 2H), 3.28-3.23 (m, 1H), 

2.63-2.58 (m, 1H), 2.18 (s, 3H, CH3), 2.15-2.03 (m, 

2H, CH2), 1.64-1.57 (m, 2H, CH2). IR (KBr): 3352, 

3241, 2922, 2850, 2218, 1565, 1517, 1454, 1344, 1264, 

1104, 1016, 850, 733, 702cm-1. MS-ESI: m/z 358.14 

[M-H]-. 

 

Compound 4j: Tawny fawn solid; mp: 261-

262°C. 1H NMR (CDCl3): δ = 8.30-7.46 (m, 4H, Ar-

H), 5.07 (s, 2H, NH2), 3.45-3.38 (m, 2H), 3.28-3.23 (m, 

1H), 2.64-2.56 (m, 1H), 2.19 (3H, CH3), 2.12-1.99 (m, 

2H, CH2), 1.73-1.63 (m, 2H, CH2). IR (KBr): 3384, 

3181, 2924, 2852, 2215, 1566, 1528, 1452, 1350, 1296, 

1258, 1233, 1163, 1140, 927, 860, 795, 732, 702cm-1. 

MS-ESI: m/z 358.14 [M-H]-. 

 

Compound 4k: Yellowish-brown solid; mp: 

250-251°C. 1H NMR (CDCl3): δ = 7.16-6.92 (m, 4H, 

Ar-H), 4.96 (s, 2H, NH2), 3.80 (s, 3H, OCH3), 3.59-

3.58 (m, 1H), 3.43-3.40 (m, 1H), 3.26-3.20 (m, 1H), 

2.59-2.54 (m, 1H), 2.18 (s, 3H, CH3), 2.15-2.05 (m, 

2H, CH2), 1.67-1.52 (m, 2H, CH2). IR (KBr): 3382, 

3136, 2921, 2849, 2214, 1610, 1565, 1516, 1450, 1348, 

1292, 1252, 1173, 1034, 831, 786cm-1. MS-ESI: m/z 

342.90 [M-H]-. 

 

Compound 4l: Yellowish-brown solid; mp: 

221-222°C. 1H NMR (CDCl3): δ = 7.01-6.69 (m, 3H, 

Ar-H), 5.06 (s, 2H, NH2), 3.95 (s, 3H, OCH3), 3.89 

(3H, OCH3), 3.70-3.67 (m, 1H), 3.52-3.49 (m, 1H), 

3.34-3.28 (m, 1H), 2.68-2.62 (m, 1H), 2.25 (3H, CH3), 

2.22-2.12 (m, 2H, CH2), 1.82-1.59 (m, 2H, CH2). IR 

(KBr): 3388, 3150, 2918, 2848, 2213, 1604, 1567, 

1517, 1464, 1449, 1409, 1349, 1318, 1296, 1258, 1235, 

1136, 1022cm-1. MS-ESI: m/z 373.17 [M-H]-. 

 

Compound 4m: Tawny solid; mp: 242-245°C. 
1H NMR (CDCl3): δ = 7.36-7.09 (m, 4H, Ar-H), 5.04 

(s, 2H, NH2), 3.65-3.63 (m, 1H), 3.51-3.48 (m, 1H), 

3.33-3.28 (m, 1H), 3.01-2.94 (m, 1H, CH), 2.66-2.61 

(m, 1H), 2.25 (s, 3H, CH3), 2.22-2.04 (m, 2H, CH2), 

1.77-1.71 (m, 2H, CH2), 1.31 (d, 6H, 2CH3). IR (KBr): 

3397, 3314, 3182, 2967, 2922, 2850, 2796, 2217, 1565, 

1451, 1294, 1265, 1252, 1236, 1160, 1138, 1053, 1021, 

923, 834, 801, 764, 719cm-1. MS-ESI: m/z 355.20 [M-

H]-. 

 

Compound 4n: Yellow solid; mp: 287-289°C. 
1H NMR (CDCl3): δ = 8.00-7.27 (m, 7H, Ar-H), 5.09 

(s, 2H, NH2), 3.65-3.62 (m, 1H), 3.51-3.48 (m, 1H), 

3.37-3.31 (m, 1H), 2.70-2.65 (m, 1H), 2.24 (3H, CH3), 

2.21-2.04 (m, 2H, CH2), 1.82-1.76 (m, 2H, CH2). IR 

(KBr): 3398, 3189, 2922, 2849, 2797, 2213, 1564, 

1447, 1297, 1267, 1235, 1161, 1140, 816, 800, 785, 

750cm-1. MS-ESI: m/z 363.17 [M-H]-. 

 

Compound 4o: Yellow solid; mp: 315-317°C. 
1H NMR (CDCl3): δ = 7.53-7.10 (m, 3H, Ar-H), 5.07 

(s, 2H, NH2), 3.80-3.78 (m, 1H), 3.51-3.48 (m, 1H), 

3.33-3.27 (m, 1H), 2.65-2.60 (m, 1H), 2.26 (s, 3H, 

CH3), 2.23-2.17 (m, 2H, CH2), 1.82-1.57 (m, 2H, CH2). 

IR (KBr): 3389, 3237, 3099, 2923, 2850, 2797, 2216, 

1564, 1454, 1297, 1258, 1237, 1161, 1144, 1039, 842, 

791, 712cm-1. MS-ESI: m/z 319.11 [M-H]-. 
 

Results and Discussion 
 

Initially, we explored the three-component 

reaction of tropinone 1 (0.3 mmol), malononitrile 2 

(0.6 mmol) and 4-bromobenzaldehyde 3a (0.3 mmol) 

in the presence of 2 equiv DBU in toluene at 100°C for 

10 hours. The product 4a was isolated in 30% yield 

(Table-1, entry 1). Subsequently, other organic bases 

including pyrrolidine, piperidine, morpholine, 

triethylamine, triethylenediamine and sodium 

methanolate, were used in model reaction to find out 

the ideal organic base with the most extraordinary 

performance. To our disappointment, the model 

reaction with other organic bases did not show better 

results in the perspective of product yield (Table-1, 

entries 2-7). Therefore, DBU was the most prominent 

organic base and used in the next optimization of 

process conditions. Then, the reaction solvent was 

replaced with other organic solvents including 

ethylene glycol, DMF, DMSO, tetrahydrofuran, 

acetonitrile and methanol, and the experimental results 

were shown in Table-1 (entries 8–13). Experimental 

results indicated that product yield has been 

significantly improved when tetrahydrofuran was used 

as a solvent. Finally, we turned our attention to study 

the influences of different amounts of malononitrile, 

expecting that product yield may increase along with 

the addition of more malononitrile (Table-1, entry 11 

and entries 14–16). When the amount of malononitrile 

was doubled, the reaction can proceed smoothly with 

highest yield. Through systematic screening, we have 
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established a direct and effective means for the 

preparation of 4-aryl-5,8-epiminobenzo[7]annulene 

derivative 4a in 70% yield (Table-1, entry 15). 

 

Table-1: Optimization of process conditions. 

 

Entry Solvent Base Equiv. of malononitrile Temp (°C) Yield of 4aa (%) 

1 Toluene DBU 2 100 30 

2 Toluene Pyrrolidine 2 100 20 

3 Toluene Piperidine 2 100 27 

4 Toluene Morpholine 2 100 13 

5 Toluene Triethylamine 2 100 18 

6 Toluene Triethylenediamine 2 100 9 

7 MeOH Sodium methanolate 2 60 7 

8 Ethylene glycol DBU 2 100 15 

9 DMF DBU 2 100 14 

10 DMSO DBU 2 100 32 

11 Tetrahydrofuran DBU 2 60 49 

12 Acetonitrile DBU 2 60 28 

13 Methanol DBU 2 60 37 

14 Tetrahydrofuran DBU 3 60 62 

15 Tetrahydrofuran DBU 4 60 70 

16 Tetrahydrofuran DBU 5 60 70 

a Isolated yield after purification by silica gel column chromatography 
 

Table-2: Synthesis of 4-aryl-5,8-epiminobenzo[7]annulene derivatives. 

 

Entry R (3) Compound Yield (%)a 

1 4-BrC6H4 (3a) 4a 70 

2 4-FC6H4 (3b) 4b 34 

3 4-ClC6H4 (3c) 4c 44 

4 3-ClC6H4 (3d) 4d 63 

5 4-CH3SO2C6H4 (3e) 4e 30 

6 4-CF3C6H4 (3f) 4f 39 

7 3-CF3C6H4 (3g) 4g 51 

8 4-CNC6H4 (3h) 4h 44 

9 4-NO2C6H4 (3i) 4i 34 

10 3-NO2C6H4 (3j) 4j 36 

11 4-CH3OC6H4 (3k) 4k 42 

12 3,4-(CH3O)2C6H3 (3l) 4l 41 

13 4-iPrC6H4 (3m) 4m 70 

14 2-Naphthyl (3n) 4n 34 

15 2-Thienyl (3o) 4o 35 

a Isolated yield after purification by column chromatography. 
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Scheme-1:  Reasonable mechanism for the tandem reactions. 
 

With the optimum process conditions at hand, 

the exploration of substrate scope with regard to the 

above-mentioned reaction has become the next most 

pressing matter (Table-2). Firstly, different aromatic 

aldehydes containing halogen substituent 3a-d were 

used for the reaction, and barely satisfying yields were 

obtained (Table-2, entries 1-4). Then, various aromatic 

aldehydes with an electron-withdrawing group 3e-j 

were selected as the substrate for this reaction, and the 

corresponding final products 4e-j have also been 

successfully synthesized (Table-2, entries 5-10). 

Afterwards, the substituent group in aromatic 

aldehydes were replaced by diversified electron-

donating groups as substrate (Table-2, entries 11-13), 

and the reactions proceeded well, affording the target 

products 4k−m with acceptable isolated yields (up to 

70%). Furthermore, 2-naphthaldehyde 3n, as a 

member of fused-ring compounds, was also 

transformed to the product 4n smoothly (Table-2, 

entry 14). To further extend the application of the 

model reaction, heterocyclic analogue 3o was 

employed in this procedure, and the desired target 

product 4o was separated successfully (Table-2, entry 

15). 

 

A plausible mechanism for the one-pot 

reaction was outlined in Scheme-1. The reaction 

started from the Knoevenagel condensation of 

aromatic aldehydes and malononitrile, and the formed 

2-arylidenemalononitrile was then reacted with 

tropinone through a Michael addition reaction. 

Subsequently, the keto group in the intermediate 

product was nucleophilically attacked by another 

activated malononitrile. Finally, a new benzene ring 

was successfully constructed by successive domino 

reactions, including dehydration, intramolecular 

nucleophilic addition and cyclization reaction. 

 

Conclusion 

 

On balance, we have explored a candidate 

synthesis means for the preparation of potentially 

biologically active 4-aryl-5,8-

epiminobenzo[7]annulenes through one-pot 

Michael/cyclization reaction of tropinone, 

malononitrile and aromatic aldehydes. Under 

optimized reaction process conditions, various 4-aryl-

5,8-epiminobenzo[7]annulenes with different 

substituents were synthesized in good yield. The 

tandem domino reaction has broad industrial 

application prospect in organic and medicinal 

chemistry due to its notable advantages, such as 

extensive substrate scope, high atomic utilization 

efficiency, diminished costs as well as simple and 

practical operation process. 
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